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Abstract-This paper is concerned with a theoretical analysis ofan infinite zig-zag array ofcircular
holes in an infinite solid under uniaxial tension. We use properly defined unit regions. assume
complex stress potentials in the form of Laurent series ellpansions and determine the unknown
coefficients from the boundary conditions for the unit regions used. Numerical results for the
mallimum stress. the stress concentration factor and the e!TI:ct of perfor:ltion on the tensile stiffness
of the solid are given for various hole sizes and hole spacings in both directions. The results are
fitted to reliable polynomial formulae for convenience in engineering :lpl'lications.

I. INTRODUCTION

A zig-Z:'lg afnty of circular holes is quite important. not only as a basic stress concentration
problem. but also as a model of randomly distributed voids in materials. This problem was
treated by Saito (1957) :.md Bailey and Hicks (1960). but their analyses were confined to a
square .. rray of holes. and the maximum stress was arbitrarily assumed to occur ..cross the
ligament. In the present p:'lpcr. we analyze general zig-zag arrays of circular holes in an
infinite solid under uniaxi..1 tension. and examine the etli.:cts of the size and the relative
location of the holes on the maximum stress and the apparent tensile stiffness of the solid.

In the analysis. we choose suitable unit regions, and assume Laurent series expansions
for the complex potentials in forms satisfying the traction-free conditions ulong the hole
edges. Then the unknown coetIicients in the Laurent series are determined from the bound
ary conditions at the outer edges of the unit regions used. At this stage. we use a new
procedure based on element-wise resultunt forces and displacements in order to get highly
accurate results. This method was developed by Isida (1971), and proved a powerful
technique both in plane problems (Isida, 1978; Isida und Nemat-Nasser. 1987). and three
dimensional problems (Isida el al., 1983. 1984; Isida and Noguchi. 1984).

Numerical calculations are carried out for various hole sizes and hole spacings in both
directions. The results for the maximum stress. the stress concentration factor and the
tensile stiffness of the perforated solid are represented in tables and figures. These results
are then fitted to reliable polynomial formulae for convenience in engineering applications.

2. THEORETICAL ANALYSIS

2.1. Fundamental equations and description of prohlem
In plane elasticity. all the physical quantities are given in terms of two complex

potentials tj)(:). t/I(:) and their derivatives. where: = .l'+ iy (Timoshenko and Goodier,
1951).

Components of stress:

0'.+0'.. = 4 Re[tj)'(:)]

O'y-0'.+2ir n . = 2[=tj)"(:)+t/I'(:»).
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Fig. I. Doubly-periodic zig-zag array ofcircular holes in an infinite solid subjected to tension.

Components of resultant force:

p. + iP, = - (P(:) - f(f(:) - t/I(:) + (an arbitrary constant).

Components of displacement:

2G(u- if') = I\:<P(:) -fc/J'(:) - t/I(:) +(an arbitrary constant)

where G is thc shear modulus, and I\: is defined by Poisson's ratio vas

(2)

(3)

{

3-V
K= I+v

3-4v

(plane stress)

(plane strain).

(4)

Constant tcrms in tXIns (2) and (3) depend on the starting points from which P" Px and u,
v are measured. but they are not essential in the analysis.

We also have the following expressions for the stresses in polar coordinates:

0"11+0", = 4 Re(c/J'(:)]

0"1I-O',+2iTrl/ = 2 CUll (i4>"(:)+t/I'(z»).

(Sa)

(5b)

This paper deals with an infinite solid containing an infinite zig-zag array of circular
holes. Let the radius of the holes be a. and the spacings between adjacent holes in horizontal
and vertical rows be 2h and 2e. respectively. as shown in Fig. I. The x- and y·axes are taken
with their origin at the center of one of the holes. and the solid is subjected to an average
tensile stress 0" in the y-direction. Figures lO(a) and (b) of Section 3.3.3 show the two
typical arrays of holes corresponding to e/b = I and ./3, which are the square array and
the equilateral triangular array. respectively.

2.2. Laurent series expan.rions ofcomplex stress potentials
We take proper unit regions and express the complex stress potentials in forms satisfy

ing the symmetry conditions as well as the traction·free conditions along the hole edges.
We then determine the unknown coefficients in the stress potentials from the boundary
conditions at the outer edges of the unit regions.

For the above unit regions. we have chosen the triangle ODF and the rectangle ODHK
shown in Fig. I. noting the symmetry of the stress field about both the coordinates' axes.
Usually the triangular region is more simple and convenient to use than the rectangular
region. but the lalter is also used for large values of c/h since the triangular region gives
poor results.
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The complex potentials 1/>(:) and !/I(:) must be analytic in the unit region. and they can
be expanded in the following Laurent series :

""1/>(:) = L (K2n:2II+I+F2II:-2II-1)
"-0

Xl

!/I(=) = L (L2n:2n+I+H2n:-2n-1).
"-0

(6a)

(6b)

Note that symmetry dictates that all of the even power terms are missing. and that all of
the coefficients are real in both the above expressions.

The hole edge must be traction-free. or (1, = trl/ = o. We then subtract (Sb) from (Sa).
use eqns (6) with: = a eif/ and express «(1, - itrl./)'_" in power series of e ill

• Equating all the
coefficients to zero. we get the following relations among the coefficients in eqns (6):

Ho = -2a2Ko• H 2" = -(2n)2a4H2K2II-(2n-l)a~L2II_2 (n ~ I) (7a)

£211-2 = -(2n+ l)a4"K2"-a~-2L2II_2 (n ~ I). (7b)

Inserting eqns (7) into eqns (6). 1/>(=) and !/I(=) are reduced to the forms containing inde
pendent unknown cocllicients K2n and L 2".

2.3. Boundary eOtulilions ami c/('I('rminul;on of unknowns
The complex potentials (6). rewritten in terms of the independent unknowns K2" and

L 2n using eqns (7). completely satisfy the traction-free conditions along the hole edge, as
well as symmetry conditions. Therefore. the unknowns K2n and L 2n must be determined
only from the boundary conditions along the outer edges of the unit rcgions used: along
the side OF for the triangular region. or along the sides DH and HK for the rectangular
region.

For the numerical calculation. we use a mcthod based on clement-wise resultant forces
and displacements. This method was developed by Isida (1971) and proved a powerful
technique in analyzing various problems of multi-connected regions (lsida. 1978; Isida el
al.• 1983. 1984; Isida and Noguchi. 1984; Isida and Nemat-Nasser. 1987). The procedure
will be described below for each of the unit regions.

(a) Triangular unil region [Fig. 2(a»). Let M be the mid-point of the side OF. and let
SI and S2 denote the two points on this side equally distant from the point M. Then the
points SI and S2 should be in the same stress state and the displacements of these points
relative to M should be the samc.

In order to take advantage of these conditions in numerical computations, we divide
the side OF into N equal intervals QI Q2. Q2Q), ...• QNQN+ I. where N is an even integer.
N = 2m [see Fig. 2(a»).

First. the two points Q, and Q2m .. 2 _, (I = 1.2•...• m). which are equally distant from
the point M. should be in the same stress state. This requires the following conditions on
the resultant forces:

[p.t)3;-" = [Pt)8::~%-'

[P,·)S;-" = [Pf)S::~%' (I = 1.2•. .. ,m; m =N/2)

(8a)

(8b)

where [ )~ denotes the difference of the values of the quantity within the brackets at points
Band A.
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Fig. 2(a). Triangular unit region.
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Fig. 2(b). R~'Ct..nglll.. r unit region.

Secondly. the elluality of the displ.tcements at Q, .tnd Q!m ~! , relative to M rClIuires
that

[uI8~" = [uI8~-:',' ,

[vI8;-" = [v)g~-:~" (t = 1.2•...• m:m = NI2).

(9u)

(9b)

Furthermore. the resultant forccs ulong the side OF should bulunce the externulload.

[P,lt = o. [P,.)t = qh. ( 10)

Equations (8)-(10) give (2N+2) relations to determine the unknown coellicicnts K!n and

L!n'

(b) Rectal/gular ul/it regiol/ [Fig. 2(b»). We divide the sides OH und HKinto N, and
N! equal intervals. respectively. where N2 is taken to be an cven integer. N2 = 2",. These
intervals arc QIQ2' Q!QJ•. ,. and Q.vQN+ I (N = N, +N2)• •is shown in Fig. 2(b).

The stress state is symmetric about OH. that is: t". = 0 and u = constant along OH.
These conditions arc replaced by the following relations in terms of Py and u for each of
the intervals:

[Pr ], =0 (j= 1.2 N,)

[u)l+ I -[It]' = 0 (j = 1.2 '. N,-I)

( Ila)

(II b)

where) is the interval number. [P•. ], in eqns (II) is determined from the real part of eqn (2)
by taking the difference in the values at the two points Q;+ , and Qi' and [u], is defined by
the mean of It at Q i+ I and Q; as obtained from the real part of eqn (3).
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[P] = P Q -P. Q.11 J .f. '+ 1 .J. I
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(12a)

(12b)

The boundary conditions along the side HK can be processed in a manner similar to
that for the side OF for the triangular unit region. Let M be the mid-point of HK. Then
the two points 51 and ~ on HK equally distant from M must be in the same stress state.
and the displacements at 5\ and 5~ relative to M must be the same. These boundary
conditions lead to the following relations:

[P,.]QQy,+~+1 = [P,.]QQY'+:"+:-' (t = 1,2•... ,m; m = Nz/2)
. 'VI .... ' . ,"1,+",.1

(13a)

(13b)

(14a)

(14b)

Furthermore. the resultant forces acting along the outer edges of this region should
balance the external load. und we have

[PtW + [Ptl~ = O. [Prm = ab. ( 15)

Thus the boundary conditions for the rectungular unit region are replaced by (2N+ I)
relations consisting of eqns (II) and (13) -( 15), where N = N 1+ N2'

As shown above. we have (2N+2) .md (2N+ I) boundary relations for the triangular
and rcct.mgular unit regions. respectively. Corresponding to these relations. we take
(2N+2) unknowns K~, L~ (II = 0, 1,2•... ,N) for the triangular region. and (2N+ I)
unknowns K~ (n = 0, 1,2, .... N), L~ (n = 0, 1,2, ...• N - I) for the rectangular region,
neglecting higher order coefficients. These unknowns are determined by the corresponding
boundary conditions.

3. NUMERICAL RESULTS

3.1. General remarks on numerical allalysis anti accuracy of results
The numerical results of this problem depend upon the ratio of a. band c, or upon the

two dimensionless parameters

b , = ~
Jl=- • ... b'c

We also define the following parameters:

. u ,
I., = - = ,.Jl

C

,
. nu- n,

f = porosity = 2bc = 2' )··11

( 16)

(17)

(18)

where the porosityfis the volume fraction of the holes used in specifying the tensile stiffness
of the porous solid.

In the present problem. we are especially interested in two quantities. One is the
maximum circumferential stress. and the other is the effect of holes on the apparent tensile
stiffness of the solid. With reference to the latter quantity. the following dimensionless
factor C is defined:
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(0) 11<1/,n (b) !/4 < 11 < J3' (c) 11 >4
Fig. 3. Three extreme cases when adjacent holes touch each other.

c = ~: = tensile stiffness factor

E· = apparent Young's modulus of solid with holes

{
E/( I - y 2) (plane strain)

Ell = Young's modulus of material = E ( I )pane stress.

(19a)

(19b)

(19c)

E is Young's modulus of the material measured with thin plate specimens. Eu and E·
depend on E and y, but C = E·/Ell is independent of them ~tnd is common to the plane
stress and the plane strain cases.

Numeric:'11 calculations have tx.'Cn carried out for 138 combinations of J.l and A. as
shown in Table 3 of Section 3.3.1. where the upper limit of 1 evidently depends on Jl.
Obviously• ..t cannot exct.-cd the vulues for the extreme cases when some of the adjacent
holes touch eueh other, as shown in Fig. 3(a-c), depending on the three ranges of J.l. This
physical upper limit of ..t is given as a function of Il in each of the above three ranges of J.l.
and is shown by the kinked dashed curve in Fig. 4. The practical upper limit on ..t is given
below for which the present analysis gives reliable results with reasonable computing cost.
This has been found to be about 80% of the physical limit,

{

o.s (J.l ~ 1/J3)

). ~ O.SJI +J.l 2/(2, l ) (l/J3 ~ Il ~ J3)

O.SIJ.l (Il ;;, J3).

(20)

This practical upper limit of ). is shown by the kinked solid curve in Fig. 4.
The numerical results from the analysis are expected to approach the exact values with

increasing number of the boundary elements of the unit regions, N for the triangular region

).

1.0

0.8 .........,..,..,.,.,..,-l...

1.0 11=.2. I.S v1' 2.0
c

Fig. 4. Region of validity.
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Table I. Variations of results with number
of subdivision (P = I and;' =0.5. triangular

region)

855

N

4
B

12
16
24

7.1485 16°
7.0053 16°
7.0047 17°
7.0046 17°
7.0046 \70

go/Eo

0.2133
0.2164
0.2164
0.2164
0.2164

or N 1 and N 2 for the rectangular region. As an example, Table I gives the results for the
maximum stress, its location and the stiffness factor for the case of J.l = I and A. = 0.5,
calculated by using the triangular unit region with 4, 8. 12, 16 and 24 boundary elements.
We find rapid convergence of the numerical results with increasing values of N, and the
errors seem to be less than 2% even when N =4.

3.2. Extreme cases when c -+ 00 and b -+ 00

Consider the limiting cases when c -+ 00 and b -+ 00. which correspond to an infinite
row of holes vertical and parallel to the loading direction as shown by Fig. 5(a) and (b),
respectively. These problems were solved by Isida (1960) using a perturbation procedure,
and have been reanalyzed here in order to get reliable results for wider ranges of A. = a/h
or A.l =a/c. Near exact values are obtained in the ranges of A.. A.I ~ 0.8. In the former case,
the form factor (stress concentration factor) Of is based on the mean stress over the minimum
section. or Of = (I-A.)um../u.

The analytical values for both problems are given in Table 2 in the columns marked
"analysis". These results are then fitted to power series of A. or A.I by using a least-square
method. and the following formulae are obtained.

fig. Sea). Infinite row ofcircular holes under transverse tension.

~t1

Fig. S(b). Infinite row of circular holes under longitudinal tension.
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Table 2. Infinite row orcircular holes under uniaxial tension

Case Transverse tension (Fig. 5(a»
Longitudinal

tension (Fig.5(b»

.\ o-!o a oeaz/o

.\1 Analysis Eqn. (21) Analysis Eqn. (22) Analysis Eqn. (2,3)

0 3.0 3.0 3.0 3.0 3.0 3.0
0.05 3.000 3.000 2.850 2.850 2.984 2.984
O.fO 3.000 3.000 2.700 2.700 2.936 2.937
0.15 3.002 3.002 2.552 2.552 2.862 2.863
0.20 3.006 3.006 2.405 2.405 2.768 2.769
0.25 3.015 3.014 2.261 2.261 2.660 2.661
0.30 3.031 3.030 2.122 2.121 2.547 2.546
0.35 3.000 3.000 1.966 1.966 2.434- 2.430
0.40 3.000 3.097 1.858 1.858 2.326 2.320
0.45 3.155 3.158 1.735 1.737 2.2'.27' 2.220
0.50 3.241 3.249 1.621 1.625 2.139 2.134
0.55 3.366 3.380 1.515 1.521 2.002 2.063
0.60 3.546 3.566 1.418 1.426 1.995 2.005
0.65 3.811 3.833 1.334 1.342 1.937 1.955
0.70 4.204 4.220 1.261 1.266 1.887 1.904
0.75 4.803 4.800 1.201 1.200 1.842 1.840
0.80 5.700 5.715 1.151 1.143 1.788 1.746
1.0 ... ... 1.0 1.0

Case (.1): an infinite row of holes in the x-direction (c -+ 00)

11..".. I .... , 11 2 58314 I ,., •s--G' =r:-i+.l-A.-I.--A+. ,. -I. ~.'I.

~ = (1-),) I1m~~ (mean error =0.2%).
q

C<lse (b) : tin infinite row of hoks in the y-din:ction (b .... .'1)

(21)

(22)

~m•• =3 -6.687).i + 1.96\)'~ + 15.715).1- 13.476i.i (mean error =0.3%). (23)
(1

The values from eqns (21 )-(23) arc also given in Table 2, and show excellent agreement
with the analytical values in the range of i., i' l ~ 0.8.

3.3. Circumferemial stress alltl stress concentration factors
3.3.1. EjJects of parameters Otl circllmfermtial stress. Figure 6(a-e) shows the

distributions of the normalized circumferential stress (111/(1 for cjh = 2, I and 0.5. For large
values of f:jh {fig. 6(a)], the stress distribution is similar to that for a horizontal row of
holes. as shown by Fig. 5(a). and t1m•• occurs at the point A (0 =0). When cjh is small [Fig.
6(c)]. vertical rows of holes disturb the stress flow around the mid-portions of the sections
between horizont<llly <1djm.:ent holes. <lnd 11m•• also takes place at point A.

For intermediate values of cjh (Fig. 6(b)]. however, the situation is quite different. In
such cases, 11m•• occurs at point A for small values of ).• but as ), increases the stress tlow
around point A is considerably disturbed by the presence of obliquely located holes, and
O'm•• takes place <1t some other point B (0 '# 0). Usually we have the only peak value of t111

at A or B. but in a limited range of J1. and for elCtremcly large values of J., two peak values
are sometimes observed at points A and B. referred to again in the discussion of Fig. 8.
Near exact values of 11m•• have been obtained by calculating (1/1 at one degree intervals and
taking their largest values. The above observations are different from previous papers by
Saito (1957) and Bailey and Hicks (1960). in which the malCimum stress was arbitrarily
assumed to occur at point A.
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0 0

0 0 0

0 0

~ .2.0. A= %

10

Fig. 6(a). Distribution of (1,,/(1 (c/b = 2).

o 0
000

o 0

15

Fig. 6(b). Distribution of (1,,/(1 (c/b = I).

Table 3 shows the numerical results of aA/a for various values of JL and ).• together
with the values of JL .... 0 given in the second column of Table 2. In most of the calculated
cases. aA gives the maximum circumferential stress. but not in the range bounded by the
dotted line shown in the table. (n this range. am~. occurs at some other point B (0 #- 0). as
shown in Fig. 6(b). The values of ao/a (= ama./a) and their locations 0 (in degrees) are
given in Table 4.

Figures 7 and 8 show the relations obtained between am../a and ). and between am../a
and JL. We find that am~./a increases rapidly with increasing values of JL or ).• due to the
interference between adjacent holes. In a limited range of JL for large values of ).• two peak
values sometimes take place at points A and B. The dashed curves in Fig. 8 show the lower
peak value in such exceptional cases. On the curve for;' =0.8 we notice a kink at JLo *0.53
where aA = ao. and a,\ > ao or a,\ < ao depending whether JL < JLo or JL > JLo. respectively.

3.3.2. Stress concentration factors. As shown in the preceding section. aA gives the
maximum circumferential stress for a wide range of the parameters, where the form factor
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%-0.5. AS %

10

Fig. 6(e). Distribution of (1,,/(1 (c/b = 0.5).

Table 3. (11\/(1

0 0.25 0.33 0.4 0.5 l/..t.r 0.07 0.8 1.0 1.33 2.0

0.0 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
0.05 3.000 3.001 3.002 3.002 3.004 3.007 3.011 3.017 3.024 3.028 3.012
0.10 3.000 3.004 3.006 3.009 3.017 3.0Z7 3.041 3.066 3.099 3.118 3.056
0.15 3.002 3.010 3.014 3.020 3.037 3.056 3.091 3.146 3.227 3.283 3.107
0.20 3.006 3.019 3.025 3.035 3.063 3.100 3.156 3.260 3.416 3.547 3.386
0.25 3.015 3.033 3.042 3.055 3.000 3.140 3.233 3.400 3.075 3.949 3.764
0.30 3.031 3.053 3.064 3.001 3.132 3.201 3.317 3.563 4.016 4.544 4.470
0.35 3.056 3.001 3.094 3.113 3.172 3.255 3.403 3.746 4.456 5.409 5.645
0.40 3.000 3.123 3.136 3.156 3.218 3.310 3.488 3.946 5.030 6.663 7.735
0.45 3.155 3.181 3.194 3.213 3.212 3.366 3.566 4.162 5.TT7 8.510
0.50 3.241 3.265 3.rn 3.291 3.340 3.42S f~.M5--4~300-6:17o-1i.38-

0.55 3.:J36 3.300 3.395 3.404 3.435 r~"~-' 3.724 4.652 8.124
0.60 3.546 3.562 3.567 3.569 3.576 I 3.618 3.815 4.914 10.02
0.65 3.811 3.821 3.823 3.818 3.799 I 3.799 3.935 5.153
0.70 4.204 4.209 4.208 4.196 4.156 : 4.106 4.129 5.326
0.75 4.803 4.B05 4.802 4.-n:2 4.740 14.644
0.00 5.756 5.756 5.754 5.747 5.707 I 5.600

Table 4. a./a and their locations 0 (deg)

l/..t.r 0.07 0.8 1.0 1.33

0.50 3.645 4.571 7.005 t 1.60
(3°) (19°) (17°) (13°)

0.55 3.902 5.552 9.628
(220) (26°) (23°)

0.60 3.650 4.539 7.413 15.71
(17°) (290) (29°) (VO)

0.65 4.011 5.703 11.00
(VO) (33°) (32°)

0.70 4.ese 7.764 19.09
(34°) (36°) (35°)

0.75 5.924
(38°)

O.SO 8.138
(41°)
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7.0

5.0

4.0

11#2.0
133

02 0.4

Fig. 7. Relations between a..../a and;' for various IJ.

7.0
0.8

~ 0.7

"
6.0

5.0 ;i
"

o 0.5 1.0 1.5 Ila ~ 2.0

Fig. 8. Relations bctw(.'Cn am../a ,and I' for various ;..

(stress concentration factor) oc" is based on the mean stress over the minimum sections
along the x-axis. Another form factor OCD is also defined from O'D in the same manner as IX,,:

0'" • O'u
oc,,=(I-..1.)-. oclI=(I-A.)-.

0' 0'
(24)

The form factor oc corresponding to the maximum stress is then defined as follows:

(25)

Table 5 gives the values of oc calculated from Tables 3 and 4 and eqns (24) and (25). where
most of the values are oc" and the values below the dashed line are OCB.

The values of oc are plotted by thick solid curves in Fig. 9. The thin solid curves in the
figure show oc" in the range where oc" < OCD. occurring at ..1. around 0.45-0.5 for the calculated
four cases of p. When p ~ 1/J3. we have the limiting case ..1. -+ 1 as shown by Fig. 3(a).
where oc" -+ I. If p > I/.jj. however• ..1. cannot exceed the value less than unity for the
limiting cases as shown by Fig. 3(b) and (c). Triangular marks in Fig. 9 show the values of
oc" for a square array given by Bailey and Hicks (1960) which have been estimated from
diagrams in their paper. They are consistent with authors' oc,,-curve for a wide range of
..1. ~ 0.6. Saito's results (1957). however. agree with the authors' only in the range of ..1. ~ 0.15.
but not for larger values of ..1..

IAI 27IJ-D
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Table 5. Stress concentration factor;l

0 0.25 0.33 0.4 0.5 II~ 0.ff7 0.8 1.0 1.33 2.0

0.0 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
0.05 2.850 2.851 2.851 2.852 2.854 2.857 2.860 2.866 2.873 2.rn 2.861
0.10 2.700 2.704 2.705 2.708 2.715 2.724 2.737 2.760 2.789 2.800 2.752
0.15 2.552 2.558 2.562 2.567 2.581 2.600 2.627 2.676 2.743 2.791 2.692
0.20 2.405 2.415 2.420 2.428 2.451 2:480 2.525 2.608 2.733 2.838 2.709
0.25 2.261 2.275 2.281 2.291 2.321 2.361 2.425 2.550 2.756 2.002 2.838
0.30 2.122 2.137 2.145 2.157 2.1~ 2.240 2.322 2.494 2.811 3.181 3.129
0.35 1.Q36 2.003 2.011 2.023 2.002 2.116 2.212 2.435 2.800 3.516 3.669
0.40 1.858 1.874 1.882 1.894 1.931 1.986 2.093 2.357 3.018 3.900 4.641
0.45 1.735 1.750 1.757 1.7ff7 1.799 1.851 1.932 2.289 3.177 4.680
0.50 1.621 1.633 1.838 1.646 1.ff70 1.714 :"i.823'-2.2a6- -3:"502 -s."8txf
0.55 1.515 1.524 1.528 1.532 1.546 1.578 11.756 2.400 4.333
0.60 1.419 1.425 1.427 1.428 1.431 ~r.466- 1.816 2.935 6.285
0.65 1.334 1.337 1.338 1.336 1.330 : 1.404 1.995 3.851
0.70 1.261 1.263 1.262 1.259 1.247 I I.409 2.329 5.726
0.75 1.201 1.201 1.201 1.100 1.185 : 1.481
0.00 1.151 1.151 1.151 1.149 1.141 I 1.628

40

a

20

---- Eqn, GZ8)
........ Eqn(27)

o Eqn,(29)

• Eqn(30l
" Ba.lt!'y&

HIcks,

Fig. 9. Stress concentration factor x.

3.3.3. Formulae for stress concentration faclOrs. In order to get reliable results for
arbitrary values of the parameters It .lOd A. not covered in the 138 combinations studied. we
have established power series fomlulae for IX" and (lu. Here the following aspects are taken
into account.

(i) As shown in Fig. 9. the behavior of iX" depends on two ranges of J1.: It ~ IIJ3 and
J1. > I/J3. and different formulae in the two ranges are expected to give better
accuracy. We also refer to the limiting behavior as (IX,,)l_O = 3.

(ii) !Xu should diverge when obliquely located holes touch each other, as shown in
Fig. 3(b). or when A. approaches ~/(2J1.)'

Considering the above aspects. we have fitted power series involving J1. and ). to the
analytical values of 2" and OCll' The procedure is based on the least-square method. and the
following formulae arc obtained.

For (,x" in the range It ~ 1/J3 and ;. ~ 0.8:

IX" = I+(I - ;.)(2 - i. -;. ~ _;.3 +2.583).4
- 1.1931.')

+ (1-;.);. ~/l[ - 1.503 + 11.352p+).(2.308 - 16.935J1.)J (mean error =0.7%). (26)

For IX" in the range shown by hatched area for J1. ~ 1/J3 in Fig. 4:
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CIA = (1-A.)[3+A.2( -2.874+2.996Jl+ 18.3S3Jl2-8.817JlJ
)

+A.J
( -144.S6+42S.70Jl- 386.37Jl2 + 101.76Jl J

)

+A.4 (463.16-1469.3Jl+ 139S.0Jl2-362.S7Jl J») (mean error = 1.0%). (27)

For 2a in the range of Jl and A. under the dashed line in Table 5 :

I-A.
CIa = 2' [19.866-84.068Jl+ 139.SIJl2-67.482Jl J

1- A.Jl

JI +Jl2

+A.( -78.877+38S.0SJl-638.9IJl2 +308.6IJ(3)

+).2(104.01-S04.07Jl+8oo.S2Jl2-37S.33Jl3») (mean error = 1.3%). (28)

We are es~ially interested in the square array (Jl = 1) and the equilateral triangular
array (Jl = I/J) shown in Fig. lO(a) and (b), respectively.

For these special cases, we have fitted polynomials for the total form factor CI without
separating it into (XA and (Xa. They are the following equations (29) and (30), and give more
accurate values than eqns (26)-(28).

Square array:

«(X)~_I = (1-A.)[3+ A. (0.206+ 3.970A.+ 3J.OO6A.2 -12S.91A. J + I22.91A. 4)J
I-JU

(mean error = 0.3%). (29)

Equilateral triangular array:

(CI)~_II/i = (1- A.{3+ I ~A. (-0.009+ 2.80L1. - 2.160A. 2- 10.633A. J + 14.404A.4)J
(mean error = 0.4%). (30)

Values from eqns (27)-(30) are plotted in Fig. 9 as dotted curves, dashed curves, open
circles and crosses, respectively. Those from eqn (26) nearly coincide with the analytical
values and are not shown in Fig. 9.

o 0
O~O

000
o 0

Fig. lOCal. Square array or holes (p = Il.

00

°AO
000

Fig. 10(bl. Equilateral triangular array or holes (II = II j)l.
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Table 6. Tensile stiffness factor C= E*;E" for various p. and;'

'I 0.25 0.33 0.5 1/./3 0.67 0.8 1.0 1.33 2.0
.l-

0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.05 0.997 0.91:6 0.994 0.003 O.~ 0.991 0.988 0.934- o.m
0.10 0.988 0.985 o.m 0.973 0.939 0.933 0.954 0.939 0.913
0.15 0.974 0.936 0.949 0.941 0.9:2 0.918 0.898 0.867 0.820
0.20 0.955 0.940 0.912 0.899 0.883 0.858 0.823 0.773 0.712
0.25 0.931 0.909 0.867 0.847 0.823 0.700 0.732 0.664 0.599
0.30 0.902 0.873 0.817 0.790 0.756 0.704 0.631 0.548 0.487
0.35 0.870 0.833 0.762 0.7Z7 0.684 0.616 0.523 0.430 0.375
0.40 0.835 0.790 0.705 0.662 0.609 0.525 0.414 0.317 0.263
0.45 0.793 0.744 0.646 0.500 0.533 0.434 0.311 0.213
0.50 0.755 0.898 0.586 0.529 0.457 0.345 0.216 0.124
0.55 0.710 0.646 O.sa:> 0.463 0.381 0.260 0.136
0.60 0.663 0.594 0.466 0.397 0.308 0.182 0.072
0.65 0.613 0.540 0.400 0.332 0.236 0.114
0.70 0.559 0.485 0.347 0.268 0.168 0.059
0.75 0.502 0.427 0.289 0.205
0.80 0,440 0.368 0.232 0.146

3.4. Apparetll tensile st(lJlless ofperforated solid
The app~trent Young's modulus E* of this perforated solid can be c~llculated from the

displacement I' at the point F in the case of the unit triangular region or from (. at the point
M in the case of the unit rectangular region (see Fig. I).

Numerical results for the tensile stW'ness factor C defined by eqns (19) are shown in
Table 6 for various values of It and l and arc plotted in Fig. II. In the case of It -0 O. an
infinite row of circular holes in the x-direction. C remains unity independent of ;.• <lnd it
decre.lses considerably with increasing values of ;. or II. The curve for II = I (square army)
is very close to th.tt givcn by n~liley and flicks (I %0), shown by a dashed line.

Culculations have also been done l()r v~lrious vulues of It ami porosity j: The results
arc given in T,lble 7, ,llld ,tre plotted in Fig. 12, hiking f ,IS the <lbcissa instcad of ;,. We
find that the C vs f curves in Fig. 12 lie in a nurrower band than the C vs ;. curves in Fig.
II. For better understanding. the results ure replolled in Fig. 13 taking hie as the abscissa.
In this figure. C does not chunge monotonicully with hie, but it mukes up-and-down
Iluctmltions ~tnd t'lkcs the minimum around II = I for each value of j: This is the main
reason why the curves in Fig. 12 lie within a narrow band.

The stiffness lilctor C is thus alli.:ctcd very lillie by thc parameter II. or by the distribution
pattcrn of the holes, and it is neurly a function of the porosity only. A zig-zag array of
circular holes may be regarded as a model of randomly distributed voids in solids. Therefore.
thc above observation seems to suggest a strong dependence of the tensile stiffness of actual
solids on the porosity}:

1.0 ,...=---------~Il-...."....o

c

0.5

---aQil~y 8.
Hicks

o 0...............--''----'----'----..........- ..........--
0.2 0.4 0.6 X 08

Fig. II. C vs A. relations for various values of JI.
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Table 1. Tensile stiffness factor C .. E-fEo for various JJ and f

0.25 0.33 0.5 1/~ 0.07 0.8 1.0 1.33 2.0

0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.05 0.866 0.866 0.865 0.864 0.862 0.859 0.857 0.859 O.fH7
0.10 0.751 0.756 0.754- 0.750 0.744 0.734 0.728 0.734 0.759
0.15 0.645 0.661 0.661 0.653 0.642 0.624 0.611 0.624 0.070
0.20 0.544 0.575 0.580 0.570 0.553 0.527 0.508 0.527 0.594
0.25 0.443 0.495 0.509 0.400 0.474 0.441 0.417 0.441 0.527
0.30 0.419 0.444 0.430 0.404 0.365 0.337 0.365 0.457
0.35 0.385 0.369 0.340 0.297 0.268 0.296 0.411
0.40 0.331 0.313 0.281 0.227 0.208 0.239 0.360
0.45 0.281 0.2£2 0.228 0.185 0.158 0.187 0.311
0.50 0.235 0.214 0.180 0.139 0.116 0.143 0.266

1.0

c

Fig. 12. C vs f relatiuns fur V;lriUUS v;llucs of II.

1.0r- ..:..1=....;:0:.....-

c - 01

0.5

o0~--Q:-':5--~--"---~
1.0 1.5 11".Q 2.0

c

Fig. 13. C vs II relations for various values off

Based on the above information. analytical values for C have been fitted to power
series in J.l and f,

C = 1+f[ - 2.518 -1.020/ + 10.656/2 +It( -1.082+ 17.983/-45.345/2
)

+ J.l 2(0.739-19.150/ +45.710/2
) +lt J

( -0.144+5.856/ -13.455/ 2
)]

(mean error = 2.9%). (31)
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For the square and the equilateral triangular arrays shown in Fig. lO(a) and (b), we
get the more reliable formulae

(01'_1 = 1-2.998/+2.788j2-0.380/3-O.546/4 (mean error = 0.01%) (32)

(C) /. .,= 1-2.988/+5.62412-8.306/3+5.455/4 (mean error = 0.1%).
Ji- '" J

(33)

4. CONCLUSIONS

(I) For small or large values of clb, the maximum stress occurs at point A (0 =0)
[Fig. 6(a) and (c)]. For intermediate values of clb and large values of alb, however, it takes
place at point B(O ::1= 0) due to severe interactions between obliquely located holes [Fig.
6(b)]. Numerical values of the stress concentration factors are fitted to reliable polynomials
(21)-(30).

(2) The tensile stiffness factor C of the solid is nearly a function of the porosity1 and
is independent ofblc in the range 0.25 ~ blc ~ 2. This observation seems to suggest a strong
f-dependence of the tensile stiffness of actual solids with randomly distributed voids.
Numerical results of C are fitted to reliable polynomials (31)-(33).

(3) For irregular distributions of holes. a general analysis on elliptical holes is available
(Isida. 1973). Here the shapes, sizes, locations and orientations of the elliptical holes may
be arbitrary. Circul'lr inclusions and cracks may also be included. The current computer
program is valid for less than 20 holes or cracks.

(4) The analytical concept based on clcment~wise resultant forces muy be usefully
applied to more realistic problems such as a regular distribution of spherical cavities.
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