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Abstract—This paper is concerned with a theoretical analysis of an infinite zig-zag array of circular
holes in an infinite solid under uniaxial tension. We use properly defined unit regions, assume
complex stress potentials in the form of Laurent series expansions and determine the unknown
coeflicients from the boundary conditions for the unit regions used. Numerical results for the
maximum stress, the stress concentration factor and the effect of perforation on the tensile stiffness
of the solid are given for various hole sizes and hole spacings in both directions. The results are
fitted to reliable polynomial formulae for convenience in engineering applications.

I. INTRODUCTION

A zig-zag array of circular holes is quite important, not only as a basic stress concentration
problem, but also as a model of randomly distributed voids in materials. This problem was
treated by Saito (1957) and Builey and Hicks (1960), but their analyscs were confined to a
square array of holes, and the maximum stress was arbitrarily assumed to occur across the
ligament. In the present paper, we analyze genceral zig-zag arrays of circular holes in an
infinite solid under uniaxial tension, and examine the effects of the size and the relative
location of the holes on the maximum stress and the apparent tensile stiffness of the solid.

In the analysis, we choose suitable unit regions, and assume Laurent series expansions
for the complex potentials in forms satisfying the traction-free conditions along the hole
edges. Then the unknown coetlicients in the Laurent series are determined from the bound-
ary conditions at the outer edges of the unit regions uscd. At this stage, we use a new
procedure based on element-wise resultant forces and displacements in order to get highly
accurate results. This method was developed by Isida (1971), and proved a powerful
technique both in plane problems (Isida, 1978 ; Isida and Nemat-Nasser, 1987), and three-
dimensional problems (Isida er al., 1983, 1984 ; Isida and Noguchi, 1984).

Numerical calculations are carried out for various hole sizes and hole spacings in both
directions. The results for the maximum stress, the stress concentration factor and the
tensile stiffness of the perforated solid are represented in tables and figures. These results
are then fitted to reliable polynomial formulae for convenience in engineering applications.

2. THEORETICAL ANALYSIS

2.1, Fundamental equations and description of problem

In plane elasticity, all the physical quantities are given in terms of two complex
potentials ¢(z), Y(z) and their derivatives, where = = x+iy (Timoshenko and Goodier,
1951).

Components of stress:
o,+0, =4 Re[¢'()] (1a)

0, ~0,+2t,, = 2[Zd"(2)+ ¢’ (D] (1b)
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Fig. 1. Doubly-periodic zig-zag array of circular holes in an infinite solid subjected to tension.

Components of resultant force:
P, +iP, = —$(5) = i¢'(z) —~¥(2) + (an arbitrary constant). )

Components of displacement :

2G(u—ir) = kP(3) — ¢’ () — () + (an arbitrary constant) 3)

where G is the shear modulus, and « is defined by Poisson’s ratio v as

3—v L tress
k=417 (planc stress) 4
3—4v (planc strain).

Constant terms in eqns (2) and (3) depend on the starting points from which P, P, and u,
v are measured, but they are not essential in the analysis.
We also have the following expressions for the stresses in polar coordinates:

a,+0, =4 Refd'(2)] (5a)
6y —0,+2it,y = 2 [7¢"(2) +¢'(2)]. (5b)

This paper deals with an infinite solid containing an infinite zig-zag array of circular
holes. Let the radius of the holes be ¢, and the spacings between adjacent holes in horizontal
and vertical rows be 2b and 2¢, respectively, as shown in Fig. 1. The x- and y-axes are taken
with their origin at the center of one of the holes, and the solid is subjected to an average
tensile stress ¢ in the y-direction. Figures 10¢a) and (b) of Section 3.3.3 show the two
typical arrays of holes corresponding to ¢/b = | and /3, which are the square array and
the equilateral triangular array, respectively.

2.2. Laurent series expansions of complex stress potentials

We take proper unit regions and express the complex stress potentials in forms satisfy-
ing the symmetry conditions as well as the traction-free conditions along the hole edges.
We then determine the unknown coefficients in the stress potentials from the boundary
conditions at the outer edges of the unit regions.

For the above unit regions, we have chosen the triangle ODF and the rectangle ODHK
shown in Fig. 1, noting the symmetry of the stress field about both the coordinates’ axes.
Usually the triangular region is more simple and convenient to use than the rectangular
region, but the latter is also used for large values of c/b since the triangular region gives
poor results.
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The complex potentials ¢(-) and (=) must be analytic in the unit region, and they can
be expanded in the following Laurent series:

$() = 3 (Kuz?™ '+ Fyz-) (6a)
n=0

VE) = 3 (Lo + Hyz= ). (65)
n=Q

Note that symmetry dictates that all of the even power terms are missing, and that all of
the coefficients are real in both the above expressions.

The hole edge must be traction-free, or o, = 1,4 = 0. We then subtract (5b) from (5a),
use eqns (6) with = = a e and express (6, —it,),., in power series of €. Equating all the
coefficients to zero, we get the following relations among the coefficients in eqns (6) :

~2a*K,. H, = —(2m*a* 3Ky, —(n—=1)a*"Ly,_, (n2=1) (7a)
—Q@n+)a*" Ky ~a* Ly, (n21). (79)

X
!

Fy_,

Inserting eqns (7) into eqns (6), ¢(=) and (=) are reduced to the forms containing inde-
pendent unknown coefficients K, and L,,.

2.3. Boundary conditions and determination of unknowns

The complex potentials (6), rewritten in terms of the independent unknowns K, and
L,, using egqns (7), completely satisfy the traction-free conditions along the hole edge, as
well as symmetry conditions. Therefore, the unknowns K, and L,, must be determined
only from the boundary conditions along the outer edges of the unit regions used : along
the side DF for the triangular region, or along the sides DH and HK for the rectangular
region,

For the numerical calculation, we use a method based on element-wise resultant forces
and displacements. This method was developed by Isida (1971) and proved a powerful
technique in analyzing various problems of multi-connected regions (Isida, 1978 ; Isida et
al., 1983, 1984 ; [sida and Noguchi, 1984 ; Isida and Nemat-Nasser, 1987). The procedure
will be described below for each of the unit regions.

(a) Triangular unit region [Fig. 2(a)]. Let M be the mid-point of the side DF, and let
S, and S, denote the two points on this side equally distant from the point M. Then the
points S, and S, should be in the same stress state and the displacements of these points
relative to M should be the same.

In order to take advantage of these conditions in numerical computations, we divide
the side DF into N equal intervals 0, Q5. 0,0Q;,....0xQx. . where N is an even integer,
N = 2m [sec Fig. 2(a)].

First, the two points @, and @,,,..., (¢t = 1,2,...,m), which are equally distant from
the point M, should be in the same stress state. This requires the following conditions on
the resultant forces:

PG+ = [PJGzs (8a)

mel

(PIGre = [P]§22+ (t=1.2,....m:m=NJ2) (8b)

LA}

where [ ]A denotes the difference of the values of the quantity within the brackets at points
B and A.
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Fig. 2(a). Triangular unit region.
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Fig. 2(b). Rectangular unit region.

Sceondly, the equality of the displacements at @, and Q,,,, 2 ., relative to M requires
that
(WG e+ = [t]§emn2 (Ya)

LA

[0)8mer = [0]Gimez o (£=1,2,....m;m = NJ2). (9b)

LA

Furthermore, the resultant forces along the side DF should balance the external load,
[Pb =0, [P} =oabh. (10)

Equations (8)-(10) give (2N +2) relations to determine the unknown coellicients K, and
L,,.

(b) Rectangular unit region [Fig. 2(b)}. We divide the sides DH and HK into N, and
N, equal intervals, respectively, where N, is taken to be an even integer, Ny = 2m. These
intervals are Q,0;, Q:1Qs,... and Qy0Ou. 1 (N = N+ N,). as shown in Fig. 2(b).

The stress state is symmetric about DH, that is: t,, = 0 and 4 = constant along DH.
These conditions are replaced by the following relations in terms of P, and u for each of
the intervals:

A1, =0 (=1.2.... N)) (11a)
[u]/+|—[ll],-=0 (j=l,2,...,N|"l) (llb)
where j is the interval number. [P,];in eqns (11) is determined from the real part of eqn (2)

by taking the difference in the values at the two points Q,, | and Q,, and [u], is defined by
the mean of v at Q;, , and Q; as obtained from the real part of eqn (3),
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(P, =Pro,,—Pro, (12a)
U], = (ug ., +ug)/2 (j=12,....N)). (12b)

The boundary conditions along the side HK can be processed in a manner similar to
that for the side DF for the triangular unit region. Let M be the mid-point of HK. Then
the two points S, and S, on HK equally distant from M must be in the same stress state.
and the displacements at S, and S. relative to M must be the same. These boundary
conditions lead to the following relations:

[Py = [Py (132)
(P)Gsemr = [R,.]g;:;;q;z~' (t=12,....m;m= N,/2) (13b)
[yt = Wy (14a)
[y =gy (t= L2 .mim=Nyf2). (14b)

Furthermore, the resultant forces acting along the outer edges of this region should
balance the external load, and we have

(PI5+([PJk =0. [P = ob. (15

Thus the boundary conditions for the rectangular unit region are replaced by QN+ 1)
relations consisting of eqns (11) and (13) -(15), where N = N+ N,.

As shown above, we have (2N +2) and (2N + 1) boundary relations for the triangular
and rectangular unit regions, respectively. Corresponding to these relations, we take
(2N +2) unknowns K,,, L,, (n=0,1,2,...,N) for the triangular region, and QN+ 1)
unknowns K,, (n=0,1,2,....N), Ly, (n=0,1,2,...., N=1) for the rcctangular region,
neglecting higher order coefficients. These unknowns are determined by the corresponding
boundary conditions.

3. NUMERICAL RESULTS

3.1. General remarks on numerical analysis and accuracy of results
The numerical results of this problem depend upon the ratio of ¢, b and ¢, or upon the
two dimensionless parameters

/l=z. ;.=5 (16)
We also define the following paramcters:
io=2=p (17)
p
. na® n_,
f=porosnly—§E—E—§). u (18)

where the porosity f is the volume fraction of the holes used in specifying the tensile stiffness
of the porous solid.

In the present problem, we are especially interested in two quantitics. One is the
maximum circumferential stress, and the other is the effect of holes on the apparent tensile
stiffness of the solid. With reference to the latter quantity, the following dimensionless
factor C is defined :
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Fig. 3. Three extreme cases when adjacent holes touch each other.

»*

E
C= = tensile stiffness factor (19a)
0

E* = apparent Young's modulus of solid with holes (19b)

E/(1—v?) (plane strain)

E {plane stress). (19¢)

E, = Young's modulus of material = {

E is Young's modulus of the material measured with thin plate specimens. £; and E£*
depend on E and v, but C = E*/E, is independent of them and is common to the plane
stress and the plane strain cases.

Numerical calculations have been carried out for 138 combinations of i and 1 as
shown in Table 3 of Scction 3.3.1, where the upper limit of 4 evidently depends on u
Obviously, 4 cannot exceed the values for the extreme cases when some of the adjacent
holes touch euch other, as shown in Fig. 3(a-c), depending on the three ranges of u. This
physical upper limit of 4 is given as a function of ut in each of the above three ranges of g,
and is shown by the kinked dashed curve in Fig. 4. The practical upper limit on 4 is given
below for which the present analysis gives reliable results with reasonable computing cost.
This has been found to be about 80% of the physical limit,

0.8 (k< 11/3)
1<{08/ 152w (U S3<u< /I) (20)
0.8/u (k= V3.

This practical upper limit of 4 is shown by the kinked solid curve in Fig. 4.
The numerical results from the analysis are expected to approach the exact values with
increasing number of the boundary elements of the unit regions, N for the triangular region

A

1.0 booeor ww o

) Physical upper limit
08 e

rrz7zvvrri ~
~
“"Q-‘

Range of analysis

o
-~
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‘\“‘1[\1\ e

0 W w0 p=2 15 v 20

Fig. 4. Region of validity.
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Table 1. Variations of results with number
of subdivision (u = | and 4 = 0.5, triangular
region)

N Ows/0  O(deg) E'/Eg

4 7.1485 16°  0.2i33
8 7.0053 16° 0.2164
12 7.0047 179 0.2164
16 7.0048 179 0.2184
24 7.0046 17°  0.2164

or N, and N, for the rectangular region. As an example, Table | gives the results for the
maximum stress, its location and the stiffness factor for the case of u =1 and 1 =0.5,
calculated by using the triangular unit region with 4, 8, 12, 16 and 24 boundary elements.
We find rapid convergence of the numerical results with increasing values of N, and the
errors seem to be less than 2% even when N = 4.

3.2. Extreme cases when ¢ — o0 andb — o

Consider the limiting cases when ¢ — o0 and b — co, which correspond to an infinite
row of holes vertical and parallel to the loading direction as shown by Fig. 5(a) and (b),
respectively. These problems were solved by Isida (1960) using a perturbation procedure,
and have been reanalyzed here in order to get reliable results for wider ranges of 2 = a/b
or 4, = a/c. Near exact values are obtained in the ranges of 4, 4; < 0.8. In the former case,
the form factor (stress concentration factor) « is based on the mean stress over the minimum
section, or a = (| — A)a,../0.

The analytical values for both problems are given in Table 2 in the columns marked
“analysis”. These results are then fitted to power serics of 4 or 4, by using a least-square
method, and the following formulac arc obtained.

td

Fig. 5(a). Infinite row of circular holes under transverse tension.
yo

2c

Fig. 5(b). Infinite row of circular holes under longitudinal tension.
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Table 2. Infinite row of circular holes under uniaxial tension

. . Longitudinal
Case Transverse tension (Fig. 5(a)) tension (Fig. 5(b))
2 Cae/C [+ Cear/C
Ay Analysis Eqn.(21) | Analysis Eqn.(22) | Analysis Eqn.(23)
0 3.0 3.0 3.0 3.0 3.0 3.0
0.05 3.000 3.000 2.850 2.850 2.984 2.884
Q.10 3.000 3.000 2.700 2.700 2.8936 2.837
0.15 3.002 3.002 2.562 2.552 2.862 2.863
0.20 3.006 3.008 2.405 2.405 2.768 2.769
0.25 3.015 3.014 2.251 2.261 2.660 2.661
0.30 3.031 3.030 2.122 2.121 2.547 2.548
0.35 3.058 3.056 1.986 1.986 2.434 2.430
0.40 3.096 3.097 1.858 1.858 2.325 2.320
0.45 3.155 3.158 1.735 1.737 2.227 2.220
0.50 3.241 3.249 1.e21 1.625 2.138 2.134
0.55 3.366 3.380 1.515 1.8521 2.062 2.083
0.60 3.5486 3.968 1.418 1.428 1.995 2.005
0.65 3.811 3.833 1.334 1.8342 1.837 1.955%
0.70 4.204 4,220 1.261 1.266 1.887 1.904
0.75 4.803 4.800 1.201 1.200 1.842 1.840
0.80 5.756 5.715 1181 1.143 1.788 1.748
1.0 w » 1.0 1.0
Case (a) : an infinite row of holes in the x-direction (¢ — «0)
T 1 -+ 42 3 4 s
oz s o Y em Lo A% 12,5834 11934 (vd)]
o t—2
Gl“&!!
o = (1 =1) . {mean crror = 0.2%). (22)

Case (b} : an infinite row of holes in the y-direction (b — )
'—{; = 3—6.68747 + 19614} + 157154} = 13.4764] (meancrror = 0.3%). (23)

The values from egns (21)-(23) are also given in Table 2, and show excellent agreement
with the analytical values in the range of 4, 4, € 0.8.

3.3. Circumferential stress and stress concentration fuctors

3.3.1. Effeces of parameters on circumferential stress. Figure 6(a—c) shows the
distributions of the normalized circumferential stress g,/ for ¢/b = 2, | and 0.5. For large
values of ¢/b [Fig. 6(a)], the stress distribution is similar to that for a horizontal row of
holes, as shown by Fig. 5(a), and o,,, occurs at the point A (0 = 0). When ¢/b is small [Fig.
6(c)]. vertical rows of holes disturb the stress flow around the mid-portions of the sections
between horizontally adjacent holes, and ., also takes place at point A,

For intermediate values of ¢/ [Fig. 6(b)], however, the situation is quite different. In
such cases, o, occurs at point A for small values of A, but as 4 increases the stress flow
around point A is considerably disturbed by the presence of obliquely located holes, and
O takes place at some other point B (6 # 0). Usually we have the only peak value of o,
at A or B, but in a limited range of g and for extremely large values of 4, two peak values
arc sometimes observed at points A and B. referred to again in the discussion of Fig. 8.
Near exact values of g, have been obtained by calculating 6, at one degree intervals and
taking their largest values, The above observations are different from previous papers by
Saito (1957) and Bailey and Hicks (1960). in which the maximum stress was arbitrarily
assumed to occur at point A, ‘
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O O

Fig. 6(a). Distribution of a,/a (c/b = 2).

Fig. 6(b). Distribution of a,/a (c/b = 1).

Table 3 shows the numerical results of a,/a for various values of u and 4, together
with the values of g — 0 given in the second column of Table 2. In most of the calculated
cascs, o, gives the maximum circumferential stress, but not in the range bounded by the
dotted line shown in the table. In this range, g.,,,, occurs at some other point B (0 # 0), as
shown in Fig. 6(b). The values of oz/0 (= o,,../0) and their locations 0 (in degrees) are
given in Table 4.

Figures 7 and 8 show the relations obtained between ¢,/ and 4 and between o,,,/0
and u. We find that o,,,,/0 increases rapidly with increasing values of ¢ or 4, due to the
interference between adjacent holes. In a limited range of u for large values of 2, two peak
values sometimes take place at points A and B. The dashed curves in Fig. 8 show the lower
peak value in such exceptional cases. On the curve for 4 = 0.8 we notice a kink at u, = 0.53
where 6, = oy, and o, > 65 Or 6, < gy depending whether u < gy or 1t > . respectively.

3.3.2. Stress concentration factors. As shown in the preceding section, g, gives the
maximum circumferential stress for a wide range of the parameters, where the form factor
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Fig. 6(c). Distribution of ¢,/e (c/b = 0.5).

Table 3. o, /0
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Fig. 7. Relations between g,,./0 and 4 for various u.
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Fig. 8. Relations between o, /6 and g for various 2.

(stress concentration factor) a, is based on the mean stress over the minimum sections
along the x-axis. Another form factor ay is also defined from g in the same manner as a, :

aA=(|—1)%", a.,=(|—;.)%3. (24)

The form factor x corresponding to the maximum stress is then defined as follows:
o = max (o, o). (25)

Table 5 gives the values of « calculated from Tables 3 and 4 and eqns (24) and (25), where
most of the values are a, and the values below the dashed line are a;.

The values of « are plotted by thick solid curves in Fig. 9. The thin solid curves in the
figure show a, in the range where a, < ag, occurring at 4 around 0.45-0.5 for the calculated
four cases of p. When p l/ﬁ, we have the limiting case 4 — 1 as shown by Fig. 3(a),
where a, = 1. If u > l/ﬁ. however, 4 cannot exceed the value less than unity for the
limiting cases as shown by Fig. 3(b) and (c). Triangular marks in Fig. 9 show the values of
a, for a square array given by Bailey and Hicks (1960) which have been estimated from
diagrams in their paper. They are consistent with authors’ a,-curve for 2 wide range of
A < 0.6. Saito’s results (1957), however, agree with the authors’ only in the range of 1 < 0.15,
but not for larger values of 4.

SAS 27:7-D
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Table 5. Stress concentration factor 2

l" 0 0.25 033 0.4 05 {(//3 067 08 1.0 1.33 20
0.0 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
0.05| 2.850 2.851 2.851 2.852 2.854 2.857 2.860 2.866 2.873 2.877 2.861
0.10 | 2.700 2.704 2.705 2.708 2.7Ti5 2.724 2.7%7 2.760 2.789 2.806 2.752
0.15 | 2.552 2.558 2.562 2.567 2.581 2.800 2.627 2.676 2.743 2.791 2.6
0.20 | 2.405 2.415 2.420 2.428 2.451 2.480 2.525 2.608 2.733 2.838 2.709
0.25 | 2.281 2.275 2.281 2.291 2.321 2.361 2.425 2.550 2.75%6 2.952 2.838
0.30 | 2.122 2.137 2.145 2.157 2.182 2.240 2.322 2.494 2.8!11 3.181 3.129
0.35 | 1.986 2.003 2.011 2.023 2.062 2.116 2.212 2.435 2.808 3.516 3.669
0.40 | 1.858 1.874 1.882 1,884 1.931 1.986 2.083 2.367 3.018 3.998 4.64!
0.45 | 1.735 1.750 1.757 1.767 1.799 1.851 1.982 2.289 3.177 _4.680_
0.50 | 1.621 1.633 1.638 1.646 1.670 1.714 '{.B23 2.286 3,502 "5.800
0.55| 1.5!5 1,524 1.528 1,532 1.546 [.578 +1.756 2.498 4.333
0.60 | 1.419 1.425 1.427 1.428 1.431 [1.460 1.816 2.965 6.285
0.65 | 1.334 1.337 1.338 (.33 1.330!1.404 1,996 3.85!
0.70 | 1.261 1.283 1.262 1.259 1.24711.408 2.329 5.7
0.75 | 1.201 1.201 1.201 1.198 1.1851.481
0.80 | 1.151 1.151 1.151 1.149 1.141 11.628
e * 4
0} —— A
—=-= Eqn.(28)
Q - Egqn {27}
o Eqn.(29)
30 x Eqn.(30)
4 Bailey &
Hicks
204 [l
N

10 AP .
g 02 D4 06 08 j 10

Fig. 9. Stress concentration factor .

3.3.3. Formulae for stress concentration factors. In order to get reliable results for
arbitrary values of the parameters j and 4 not covered in the 138 combinations studied, we
have established power series formulae for a, and 2. Here the following aspects are taken
into account.

(i) Asshown in Fig. 9, the behavior of a, depends on two ranges of p: p € l/f and
u > I/\/3 and different formuliae in the two ranges are expected to give better
accuracy. We also refer to the limiting behavior as (a4)i.0 = 3.

(ii) ay should diverge when obliquely located holes touch cach other, as shown in

Fig. 3(b). or when 4 approaches /1 +u?/(2p).

Considering the above aspects, we have fitted power serics involving u and 4 to the
analytical values of a, and ay. The procedure is based on the least-square method, and the
following formulae are obtained.

For x, in the range st < l/f and 4 €

ay = 1+ (1-2)(2- AV 4258321 1.1934%)
+ {1 =22 u[—1.503 + 11352+ A(2.308 ~ 16.935u)] (mean error = 0.7%). (26)

For «, in the range shown by hatched area for u 2 l/\/?a in Fig. 4:
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ap = (1= A3 +13(—2.874+2.996u + 18.3534% —8.817u")
+13(— 144.56 +425.70p — 386.37% + 101.76%)
+24(463.16— 1469.3u+1395.042 —362.57u%)] (mean error = 1.0%). (27)

For x4 in the range of u and 4 under the dashed line in Table 5:

-2
= gz, (19.866~84.068 + 139.51u" — 674824
-
VAR SS
+A(—78.877+385.054— 6389147 +308.61%)

+4%(104.01 — 504.07u+ 800.52u% —375.33u%)] (mean error = 1.3%). (28)

g

We are especially interested in the square array (1 = 1) and the equilateral triangular
array (u = l/\/S) shown in Fig. 10(a) and (b), respectively.

For these special cases, we have fitted polynomials for the total form factor & without
separating it into a, and ag. They are the following equations (29) and (30), and give more
accurate values than eqns (26)—(28).

Square array:

(@),..=( —}.)[34- 4 — (0.206 +3.9704+ 33.0064% — 125.911° + I?.2.9l).‘)]
1-/24
(mean crror = 0.3%). (29)

Equilatcral triangular array :

(@,.,5=( —A)[3+ Tl‘z (—0.009+2.8011—2.1604% — 10.6331* + l4.4041‘)]
{(mcan error = 0.4%). (30)
Values from eqns (27)-(30) are plotted in Fig. 9 as dotted curves, dashed curves, open

circles and crosses, respectively. Those from eqn (26) nearly coincide with the analytical
values and are not shown in Fig. 9.

O O
O O

O O
O O

f-;ig. 10(a). Squarc array of holes (u = 1).

O O
O O

O OO

Fig. 10(b). Equilateral triangular array of holes (u = I/\/j).
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Table 6. Tensile stiffness factor C = E*/E, for various g and 4

N[ 0z 03 05 /43 067 08 1.0 1B 20
00 | 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.05]| 0,997 0.99% 0.934 0993 0.9%2 0.99! 0.968 0.984 0.977
0.10 | 0,988 0.985 0.977 0.973 0.959 0.963 0.95¢ 0.9 0.913
0.15]| 0.974 0.056 0.949 0.941 0.832 0.918 0.898 0.867 0.820
0.20 | 0,955 0.940 0.912 0.893 0.883 0.858 0.823 0.773 0.712
0.25| 0.931 0.909 0.867 0.847 0.823 0.786 0.732 0.664 0.599
0.30 | 0.902 0.673 0.817 0.790 0.756 0.704 0.631 0.548 0.487
0.35 | 0.870 0.833 0.762 0.727 0.684 0.616 0.523 0.430 0.375
0.40 | 0.835 0.790 0.705 0.662 0.603 0.525 0.414 0.317 0.263
0.45| 0.795 0.744 0.646 0.59 0.533 0.434 0.311 0.213

050 | 0.755 0.696 0.586 0.529 0.457 0.345 0.216 0.124

0.55 | 0.710 0.646 0.526 0.463 0.381 0.260 0.136

0.60 | 0663 0.534 0.466 0.397 0.308 0.182 0.072

0.65 | 0.613 0.540 0.406 0.332 0.236 0.114

0.70 | 0.559 0.485 0.347 0.268 0.168 0.059

0.75 | 0.502 0.427 0.289 0.205

0.80 | 0,440 0.388 0.232 0.146

3.4, Apparent tensile stiffness of perforated solid

The apparent Young's modulus £* of this perforated solid can be calculated from the
displacement ¢ at the point F in the case of the unit triangular region or from ¢ at the point
M in the case of the unit rectangular region (see Fig. 1).

Numerical results for the tenstle stiffness factor € defined by eqns (19) are shown in
Table 6 for various values of g and A and are plotted in Fig. 11. In the case of u— 0, an
infinite row of circular holes in the v-dircction, C remains unity independent of 4, and it
decreases considerably with increasing values of 4 or g The curve for g = | (square array)
is very close to that given by Bailey and Hicks (1960}, shown by a dashed line.

Calculations have also been done for various values of g and porosity f. The results
arc given in Table 7, and are plotted in Fig, 12, taking f as the abeissa instead of 4. We
find that the C vs f curves in Fig. 12 lie in a narrower band than the C vs 4 curves in Fig,
I'1. For better understanding, the results are replotted in Fig. 13 taking b/c¢ as the abscissa.
In this figure, C does not change monotonically with Af¢, but it makes up-and-down
fluctuations and takes the minimum around g = 1 for cach value of f. This is the main
reason why the curves in Fig. 12 lic within a narrow band.

The stitTness factor C'is thus aflected very little by the parameter g, or by the distribution
pattern of the holes, and it is nearly a function of the porosity only. A zig-zag array of
circular holes may be regarded as a model of randomly distributed voids in solids. Therefore,
the above observation seems to suggest a strong dependence of the tensile stiffness of actual
solids on the porosity /.

1.0
[
0.5
| ~--Bailey &
Hicks
0 i i &
0 02 04 06 A 08

Fig. 11. C vs 4 relations for various values of g
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Table 7. Tensile stiffness factor C = E*/E, for various 4 and f

n

x 0.25 0.3 05 1//3 067 0.8 1.0 1.3 2.0
0.0 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.05 | 0.866 0.866 0.865 0.864 0.862 0.859 0.857 0.858 0.867
0.10 | 0.751 0.756 0.754 0.750 0.744 0.734 0.728 0.734 0.759
0.15 | 0.645 0.661 0.661 0.653 0.642 0.624 0.611 0.624 0.670
0.20 | 0.544 0.575 0.580 0.570 0.553 0.527 0.508 0.527 0.5%4
0.25 | 0.443 0.4%5 0.509 0.4%6 0.474 0.441 0.417 0.441 0.527
0.30 0.419 0.444 0.430 0.404 0.365 0.337 0.365 0.457
0.35 0.385 0.369 0.340 0.297 0.268 0.298 0.411
0.40 0.331 0.313 0.28! 0.237 0.208 0.239 0.360
0.45 0.281 0.262 0.228 0.185 0.158 0.187 0.311
0.50 0.235 0.214 0.180 0.139 0.116 0.143 0.266

10

c

oSt

0

0 o1 02 03 04 § 05

Fig. 12. C vs f relations for vartous values of .

1.0 f=0
A

c —_—
s 02

ost /\/

0 s 10 15 ..b 20
B [

Fig. 13. C vs u relations for various values of /.

Based on the above information, analytical values for C have been fitted to power
series in yu and f,

C=1+f[=2.518=1.020f+10.656 1 + u(— 1.082+17.983 f —45.345 /)
+13(0.739—19.150 7 +45.710 %) + u*(—0.144 + 5.856 f — 13.455 f 2)]

{(mean error = 2.9%). (31)
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For the square and the equilateral triangular arrays shown in Fig. 10(a) and (b), we
get the more reliable formulae

(C)ymt = 1 —2.9981 +2.788 2 —0.380/>—0.546f* (meanerror = 0.01%) (32)

(€),., 5=1-2988f+5624/°~8.306f°+5.455f* (mean error = 0.1%).
(33)

4. CONCLUSIONS

(1) For small or large values of ¢/b, the maximum stress occurs at point A (0 = 0)
[Fig. 6(a) and (c)]. For intermediate values of ¢/b and large values of a/b, however, it takes
place at point B(f# # 0) due to severe interactions between obliquely located holes [Fig.
6(b)]. Numerical values of the stress concentration factors are fitted to reliable polynomials
(21)~(30).

(2) The tensile stiffness factor C of the solid is nearly a function of the porosity f and
is independent of &/c in the range 0.25 < b/c < 2. This observation seems to suggest a strong
J-dependence of the tensile stiffness of actual solids with randomly distributed voids.
Numerical results of C are fitted to reliable polynomials (31)-(33).

(3) For irregular distributions of holes, a general analysis on elliptical holes is available
(Isida. 1973). Here the shapes, sizes, locations and orientations of the elliptical holes may
be arbitrary. Circular inclusions and cracks may also be included. The current computer
program is valid for less than 20 holes or cracks.

(4) The analytical concept based on clement-wise resultant forces may be usefully
applicd to more realistic problems such as a regular distribution of spherical cavities.
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